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Abstract

Research into modeling the progression of Alzheimer’s disease (AD) has made recent progress in 

identifying plasma proteomic biomarkers to identify the disease at the pre-clinical stage. In 

contrast with cerebral spinal fluid (CSF) biomarkers and PET imaging, plasma biomarker 

diagnoses have the advantage of being cost-effective and minimally invasive, thereby improving 

our understanding of AD and hopefully leading to early interventions as research into this subject 

advances. The Alzheimer’s Disease Neuroimaging Initiative* (ADNI) has collected data on 190 
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plasma analytes from individuals diagnosed with AD as well subjects with mild cognitive 

impairment and cognitively normal (CN) controls. We propose an approach to classify subjects as 

AD or CN via an ensemble of classifiers trained and validated on ADNI data. Classifier 

performance is enhanced by an augmentation of a selective biomarker feature space with principal 

components obtained from the entire set of biomarkers. This procedure yields accuracy of 89% 

and area under the ROC curve of 94%.
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1. INTRODUCTION

In the working model for Alzheimer’s Disease (AD) progression, a cascade of events starts 

with the buildup of amyloid plaque, followed by tau-mediated neuronal injury, and then by 

memory loss and finally clinical diagnosis of AD [1]. Recently, Prestia et al. [2] have 

provided clinical evidence that the core biomarker patterns are c1 onsistent with this model. 

Specifically, the model predicts that tracer retention on amyloid PET imaging and low 

Aβ-42 concentration in the cerebral spinal fluid (CSF) should become abnormal earlier in 

the disease course, followed by cortical hypometabolism on F18-FDG-PET, and finally 

brain atrophy in structural MRI. Although biomarkers obtained through invasive collection 

of CSF and expensive PET imaging are the most consistent and reliable, predictive 

biomarkers that can be collected cost-effectively and in a minimally invasive manner would 

be preferred [3].

A number of investigators have reported progress in identifying plasma-based proteomic 

biomarkers and their effectiveness in predicting AD and mild cognitive impairment (MCI). 

In 2007, Ray et al. [4] identified 18 signaling proteins in blood plasma that can be used to 

classify blinded samples from MCI subjects who progressed to AD two to six years later. 

This study incorporated both unsupervised and supervised machine learning methodology. 

Ravetti and Moscato [5] re-analyzed the dataset of Ray et al. and obtained equivalent results 

with smaller 6-protein and 5-protein signatures using standard classification algorithms. 

Multivariate linear regressions correlating plasma and CSF biomarkers were investigated by 

Hu et al. [6] using ADNI data. Among these, changes in APOE, BNP, CRP, and pancreatic 

polypeptide levels were also associated with AD diagnosis and CSF AD biomarkers. APOE 

has been identified as the most predictive biomarker by Johnstone et al. [7], who also 

identified a limited set of paired biomarkers via univariate entropy filtering and the α-β-k 

feature selection process, achieving accuracy in excess of 85%.

Other investigators have modeled the longitudinal progression of clinical AD assessments. 

Doody et al. [8] performed mixed effects regression modeling to predict longitudinal 

performance on standard clinical measures of AD. A sigmoidal model of the longitudinal 

changes in AD assessment cognitive sub-scale (ADAScog) was developed by Samtani et al. 

[9]. Yet, the main contributors in their predictive model were demographic factors and 
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clinical assessment. To our knowledge, there are no studies that incorporate the full set of 

AD biomarker data in a comprehensive model.

Complex processes associated with AD are mediated by interactions of functionally related 

proteins [10]. Since these interactions between the plasma biomarkers are not fully 

understood, a model that incorporates as many of the biomarker data as practical could be 

valuable. In this paper, our goal is to build a predictor of clinical assessments from plasma 

protein biomarker data, which takes advantage of the full set of available ADNI biomarker 

data, and improves prediction accuracy, compared to previous investigations into plasma 

biomarkers prediction.

2. DATASET AND EVALUATION†

Data used in our study were obtained from the ADNI database (adni.loni.ucla.edu). The set 

of biomarkers and the experimental procedures used to obtain them are described in [11].

Participants received a diagnosis at their first or baseline visit to one of the consortium 

clinics of cognitively normal (CN), mild cognitive impairment (MCI) or AD based on 

clinical and neuropsychological testing in accordance with the guidelines in [12]. Twelve 

months after the baseline assessment, plasma samples were collected again but only from a 

subset of these participants. In our study, we analyzed data from CN and AD participants, 

whose plasma samples were collected at both baseline and 12 months. Hence, we used a 

selected subset of the plasma samples, including 39 CN and 65 AD patients.

A rigorous quality-control procedure was observed on each of the set of 190 analytes as 

described in [11]. Analytes with more than 10% of samples below the assay detection limits 

were excluded by the ADNI Analysis Team. As such, 44 of the 190 analytes were excluded 

from our consideration, leaving 146 analytes for the feature selection and augmentation 

process.

As is customary, a log transformation was applied prior to feature selection because 

concentrations for these analytes are generally not normally distributed.

†Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit 
organizations, as a $60 million, 5-year public-private partnership. The primary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 
Determination of sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop 
new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.
The Principal Investigator of ADNI is Michael W. Weiner, MD, VA Medical Center and University of California - San Francisco. 
ADNI is the result of efforts of many co- investigators from a broad range of academic institutions and private corporations, and 
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but 
ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 
participate in the research, consisting of cognitively normal older individuals, people with early or late MCI, and people with early 
AD. The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally 
recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.
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2.1 Evaluations

Previous studies on the AD plasma biomarkers investigated the predictive power of 

individual biomarkers as well as group of biomarkers [4–7]. In selecting biomarkers for a 

feature set, entropy heuristic was first applied to filter out non-informative analytes. A 

common method for feature selection is the (α-β)-k feature selection process [14]. Our work 

is an extension of these explorations, attempting to increase the predictive power by 

enhancing the feature space. We first re-evaluated three sets of biomarkers identified in [7], 

as summarized in Table 1. We then evaluated augmentations of these biomarker sets 

informed by clustering and dimensionality-reduction methods.

Classifiers were trained on various enhancements to the biomarker feature space using the 

provided AD and CN labels. Due to the limited number of available samples, we used a 13-

fold cross validation procedure for each classifier to evaluate performance. Based on the 

predicted output, we calculated various measures of the classifier’s performance, including 

accuracy, specificity, sensitivity and area under the ROC curve. Note that as the dataset is 

imbalanced with more AD than CN subjects, a single measure cannot represent overall 

performance.

3. METHODS

A naïve selection of all 146 analytes without feature selection would lead to an overfit to the 

noisy and uninformative features, leading to high variance in the classification. The feature 

selection process treats this problem of variance but may result in too few features and hence 

an underfit model that exhibits classification bias. The bias problem is confounded by the 

relatively small (65 positive, 39 negative) training and cross-validation set. Previous studies 

have concentrated on reduction of variance via feature selection but have ignored the 

unintended effect on bias that the smaller feature sets can yield. Our goal is to improve the 

trade-off between over-fit and under-fit by augmenting the feature space comprising selected 

features identified by previous literature [7] with additional features obtained from 

clustering and dimensionality reduction. Although the sample size of our data is not large, it 

is large enough to allow feature augmenting without incurring over-fitting problem.

In this work, we assume that the unselected features contain useful information yet are too 

noisy in their raw form to present individually. The literature is full of examples of 

improved classifier and regression performance from enhancement of feature sets with 

clusters of the original data. In [14] for example, an analysis of DNA microarray data was 

enhanced with Gene Set Enrichment Analysis, which improved the statistical significance of 

diabetic versus normal predictions. In our study, we have implemented and evaluated a 

number of clustering and dimensionality reduction methods to enhance the feature spaces of 

select plasma analytes. We have also investigated methods for improving classification 

performance via an ensemble of different classification algorithms. We evaluated the 

efficacy of various feature augmentations on the various classifier topology schemes.
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3.1. Classifier Ensemble

Ensembles of classifiers reduce the potential for over-fitting that exists with high 

dimensional data and limited number of samples [15, 16]. As a result, such ensembles have 

been successfully applied to many bioinformatics applications, e.g. classification in 

microarray and proteomic data. An ensemble was constructed consisting of five 

conventional classification algorithms: libSVM [17] with linear kernel, binary decision tree, 

naïve Bayes, logistic regression and perceptron. The latter four methods were provided by 

Matlab (The Math Works, Natick, MA). All classifiers were trained on and performed 

prediction on the same sets of data. The topology of the ensemble includes an aggregating 

libSVM classifier, as depicted in Figure 1. The feature space of the aggregating classifier 

consists of the votes of the five first-layer classifiers. The aggregating classifier was trained 

on the same labels as the first-later classifier. We performed testing on the individual 

classifiers as well the ensemble result.

3.2. Feature Clustering Methods

As described in Section 2.1, a number of clustering and dimensionality reduction methods 

were implemented and tested against the task of cross-validating the individual classifiers in 

Section 3.1 as well as the ensemble. These clustering methods are described below.

Latent Process Decomposition (LPD)—LPD is an adaptive version of Latent Dirichlet 

Allocation (LDA) [18]. In LDA, the dependency between features is explained by the 

unobserved topics [19]. Instead of imposing a multinomial distribution on each feature, the 

LPD assumes the observations of each feature follow a Gaussian distribution, which is more 

suitable for proteomic data. First, the hyper-parameters for latent processes were estimated 

with the mean and variance of each feature with an iterative method with training data. 

Second, the probability of an observation conditioned on each latent processes was 

estimated. The vector of conditional probabilities was used as the feature vector in the 

classifiers.

Mixture of Gaussian Model Clustering (GMM)—GMM clustering is similar to that 

“soft K-means” method, in that it considers clusters as Gaussian distributions centered on 

their means [20]. The algorithm maximizes the conditional probability of data given the 

center of clusters. The vector of conditional probability was used as the feature vector in the 

classifiers, similar to the manner in which LPD uses conditional probabilities.

Self-Organizing Feature Map (SOFM)—SOFM involves training a neural network by 

using unsupervised learning to produce a low-dimensional representation of the input space 

of the training samples [21].

Principal Component Analysis (PCA)—PCA decomposes of the covariance matrix of 

features into principal components, or eigenvectors ordered by decreasing eigenvalue load 

[22]. Only the most significant components are retained, thereby reducing the 

dimensionality of the representation.
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3.3. Feature Augmentation

In constructing an augmented feature space, we evaluated two different methods to combine 

feature sets, as described in [23]. The first method, known as ‘early fusion,’ uses a single 

classifier trained on all the feature sets, i.e., the feature vector itself is augmented prior to 

training the model. This method has the advantage of simplicity and can potentially capture 

interactions among different features. However, features from different sources might 

require different preprocessing or scaling or scaling procedures, and may be suitable for 

different kernels (in the case of SVM). The second method, known as ‘late fusion,’ 

combines the outputs of autonomous classifiers trained on each feature type separately. 

When we tested late fusion with the ensemble, we implemented ten first-layer classifiers, 

two for each algorithm corresponding to the two feature spaces, namely the select 

biomarkers, and the clustering representations, respectively.

4. RESULTS

The first experiment illustrates the effect of the ensemble on the select biomarkers, without 

augmentation. We used three sets of biomarkers identified by Johnstone et al. [7], as 

described in Section 2.1. We found that combining the three feature sets described in Table 

1 into a single feature space yields better results than the individual feature spaces. We refer 

to this combined feature space comprising 11 single-features, 8 meta-features and 8 

longitudinal-features identified, as the selective feature set. Table 2 provides cross-

validation results by libSVM against the three sub-spaces in the selective feature set. Table 3 

provides the cross-validation results of the various classifiers in the ensemble, on the 

combined selective feature set. The effect of combining the three sub-spaces of the selective 

feature set can be appreciated by comparing Table 2 to the first row in Table 3. The last row 

of Table 3 provides the cross-validation performance of the ensemble, which is clearly 

preferable to the individual classifiers on these data.

The ensemble’s improvement in accuracy and the area under the ROC curve (AUC), when 

compared with libSVM along, is largely due to improved specificity. The accuracy that we 

have obtained, 86% for the ensemble, is similar to the 85% reported in [7], despite the fact 

that we have used less training data than Johnstone et al., who used 112 AD and 58 CN 

subjects. By subsampling our labeled data, we discovered that performance measures 

decrease by approximately 5% as the training data as cut in half. It appears that effect of 

combining the individual select feature sub-spaces coupled with the effect of the ensemble, 

compensates for the effect of a smaller training set.

4.1. Feature Clustering

We applied the 5 different clustering methods described in Section 3.2 on the 146 analytes 

available in ADNI dataset. Selection of the reduced dimension size s (in LDA- the number 

of topics; GMM Clustering- the number of clusters; SOFM – number of nodes in the 

network; PCA- number of principal components) is critical to the desired effect of 

improving the classification result. As an example, Figure 2 shows the effect on classifier 

performance on the number of principal components from PCA selected for the augmented 
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feature space used in classification. An inspection of Figure 2 suggests that, for PCA, the 

value s=20 yields the best result. Although 21 or more features can be selected without 

compromising performance, these additional features would require unnecessary 

computational resources.

Using similar procedures as those represented in Figure 2, we determined the best value of s 

for each clustering method on these data. Table 4 lists these method-specific s values, as 

well as the corresponding classification results on the clustered features alone. Note that the 

first row of Table 4 presents the classification result when all 146 analytes are included in 

the feature space by “brute force.” As we have discovered that the 20 PCA components 

yield the best classification results, we have concluded that PCA is the more effective of the 

clustering methods. Subsequent tests are performed on only the 20 PCA features.

We tested both single SVM (linear kernel) and the ensemble on the 20 PCA features alone 

as shown in Table 5. In this result, we find that linear SVM actually outperforms the 

ensemble.

4.3. Feature Augmentation

We compared the early fusion and late fusion methods of combining the selective feature set 

with the PCA features as described in Section 3.3. We assert that since the PCA features 

were computed from the entire set of 146 analytes, that the PCA feature space contains 

information not present in the selective feature set. For each fusion method, both single 

linear SVM and the ensemble classifier are implemented. For early fusion, we constructed a 

feature vector by concatenating the respective feature vectors from the selective feature-set 

and the 20 PCA feature-set. For late fusion, selective feature-set and PCA feature-set were 

used parallel as inputs for two classifiers, e.g. two independent SVMs. Then, the outputs of 

two SVMs are aggregated for final decision using an aggregating SVM. The result of 

combining the feature sets with early fusion and late fusion is shown in Table 6. Early fusion 

on a linear SVM appears to yield the best result, an accuracy of 89% and an area under the 

ROC curve of 94%.

5. CONCLUSION AND FUTURE WORK

Feature augmentation by PCA improved classification performance by 8% for accuracy, 9% 

for sensitivity, 13% for specificity and 3% for AUC by 3%, compared to using the full 

selected feature set without augmentation. Our overall best result of 89% accuracy compares 

favorably with the 85% accuracy reported by Johnstone et al. on a larger sample of the same 

ADNI dataset. As such, we believe that the PCA augmentation approach proposed here 

represents a clear improvement in predicting AD assessment from plasma biomarker data.

While we are encouraged by the effect of augmenting a biomarker feature space with 

features such as PCA features that were derived directly from the original data, there may be 

alternative clusters of the data based on other sources of evidence such as the literature. As 

such, we intend to investigate additional feature-space augmentations using latent semantic 

indexing [24] along with the augmentations proposed here. We also intend to explore 

Mo et al. Page 7

ACM Conf Bioinform Comput Biol Biomed Inform (2013). Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dynamic state models to exploit the additional longitudinal data available in ADNI. As we 

have discovered that a linear SVM yields the best result in an augmented feature space, we 

are encouraged that a linear model may be appropriate to describe the observations.

Acknowledgments

This research was supported by the Intramural Research Program of the NIH.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, 
the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the 
following: Abbott; Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; 
AstraZeneca; Bayer HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; 
Elan Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company 
Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & 
Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & 
Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Servier; Synarc Inc.; 
and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support 
ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National 
Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and 
Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of 
California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of 
California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514.

References

1. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski 
JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet 
Neurology. 2010; 9(2010):119–128.

2. Prestia A, van der Flier WM, Ossenkoppele R, Van Berckel BV, Barkhov F, Teunissen CE, Wall 
AE, Carter SF, Scholl M, Choo IH, Nordberg A, Scheltens P, Frisconi GB. Prediction of dementia 
in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology. 2013; 
80(2013):1–9.

3. Williams R. Warning signs. Nature. 2011; 475(2011):S5–S7. [PubMed: 21760581] 

4. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Bleddow K, Friedman LF, Galasko 
DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinocici GD, 
Robinson W, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani 
R, Wyss-Coray T. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma 
signaling proteins. Nature Medicine. 2007; 13(11):1359–1362.

5. Ravetti MG, Moscato P. Identification of a 5-Protein Biomarker Molecular Signature for Predicting 
Alzheimer’s Disease. PLOS One. 2008; 3(9):e3111. [PubMed: 18769539] 

6. Hu W, Holtzman DM, Fagan AM, Shaw LM, Perrin R, Arnold SE, Grossman M, Xiong C, Craig-
Schapiro, Clark CM, Pickering E, Kuhn M, Chen Y, Van Deerlin VM, McCluskey L, Elman L, 
Karlawish J, Chen-Plotkin A, Hurtig HI, Siderowf A, Swenson F, Lee VM-Y, Morris JC, 
Trojanowski JQ, Soares H. Plasma multivariate profiling in mild cognitive impairment and 
Alzheimer disease. Neurology. 2012; 79:897–905. [PubMed: 22855860] 

7. Johnstone D, Milward EA, Berretta R, Moscato P. Multivariate Protein Signatures of Pre-Clinical 
Alzheimer’s Disease in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Plasma Proteome 
Dataset. PLoS One. 2012; 7(4):e34341. [PubMed: 22485168] 

8. Doody RS, Pavlik V, Massman P, Rountree S, Darby E, Chan W. Predicting progression of 
Alzheimer’s disease. Alzheimer’s Research & Therapy. 2010; 2:2.

9. Samtani MN, Farnum M, Lobanov V, Yang E, Raghavan N, Dibernardo A, Narayan V. Alzheimer’s 
Disease Neuroimaging Initiative. An improved model for disease progression in patients from the 
Alzheimer’s disease neuroimaging initiative. The Journal of Clinical Pharmacology. 2012; 52(5):
629–44.

Mo et al. Page 8

ACM Conf Bioinform Comput Biol Biomed Inform (2013). Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



10. Chadwick W, Brenneman R, Martin B, Maudsley S. Complex and Multidimensional Lipid Raft 
Alterations in a Murine Model of Alzheimer’s Disease. Int J Alzheimers Dis. 2012; 
604792:21151659.

11. Biomarkers Consortium. Use of Targeted Multiplex Proteomic Strategies to Identify Plasma-Based 
Biomarkers in Alzheimer’s Disease – Data Primer. 2010. http://adni.loni.ucla.edu/wp-content/
uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf

12. Alzheimer’s Disease Neuroimaging Initiative. ADNI Procedures Manual. 2006. http://www.adni-
info.org/Scientists/Pdfs/adniproceduresmanual12.pdf

13. Berretta R, Costa W, Moscato P. Combinatorial optimization models for finding genetic signatures 
from gene expression datasets. Methods in Molecular Biology. 2008; 453:363–377. [PubMed: 
18712314] 

14. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson 
E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, 
Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes 
involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature 
Genetics. 2003; 34(3):267–73. [PubMed: 12808457] 

15. Yang P, Hwa Yang Y, Zhou B, Zomaya YA. A Review of Ensemble Methods in Bioinformatics. 
Current Bioinformatics. 2010; (13):296–308.

16. Dietterich TG. An Experimental Comparison of Three Methods for Constructing Ensembles of 
Decision Trees: Bagging, Boosting and Randomization. Machine Learning. 2000; 40:139–158.

17. Chang CC, Lin C-J. LIBSVM: A library for support vector machines. ACM Transactions on 
Intelligent Systems and Technology. 2011; 2(3):1–27.

18. Rogers S, Girolami M, Campbell C, Breitling R. The Latent Process Decomposition of cDNA 
Microarray Data Sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 
2005; 2(2):143–56. [PubMed: 17044179] 

19. Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. Journal of Machine Learning Research. 
2003; 3(4–5):993–1022.

20. Bishop, C. Pattern recognition and machine learning. New York: Springer; 2006. 

21. Kohonen T. Self-Organized Formation of Topologically Correct Feature Maps. Biological 
Cybernetics. 1982; 43(1):59–69.

22. Abdi H, Williams LJ. Principal component analysis. Wiley Interdisciplinary Reviews: 
Computational Statistics. 2010; 2:433–459.

23. Madani O, Georg M, Ross DA. On Using Nearly-Independent Feature Families for High Precision 
and Confidence. JMLR Workshop and Conference Proceeding. 2012; 25:269–284.

24. Chen H, Martin B, Daimon CM, Siddiqui S, Luttrell LM, Maudsley S. Textrous!: Extracting 
Semantic Textual Meaning from Gene Sets. PLoS One. 2013; 8(4):e62665. [PubMed: 23646135] 

Mo et al. Page 9

ACM Conf Bioinform Comput Biol Biomed Inform (2013). Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://adni.loni.ucla.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf
http://www.adni-info.org/Scientists/Pdfs/adniproceduresmanual12.pdf
http://www.adni-info.org/Scientists/Pdfs/adniproceduresmanual12.pdf


Figure 1. 
Schematic of the ensemble of classifier methods.
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Figure 2. 
Classification performance as function of principal components
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Table 1

List of analyte signature sets identified in [7].

Single feature
a2-Macroglobulin, Angiotensinogen, Apolipoprotein A-II, Apolipoprotein E, Betacellulin, Fas Ligand, Heparin-

Binding EGF-Like Growth Factor, Macrophage Inflammatory Protein-1a, Peptide YY, Serum Glutamic Oxaloacetic 
Transaminase, Transthyretin

Meta-feature

Angiopoietin-2 & Interleukin-16
Apolipoprotein A-II & Betacellulin

Apolipoprotein E & Brain Natriuretic Peptide
Apolipoprotein E & Serotransferrin

Apolipoprotein E & Thrombopoietin
Chromogranin-A & Heparin-Binding EGF-Like Growth Factor
Interleukin-6 receptor & Macrophage Inflammatory Protein-1a

Macrophage Inflammatory Protein-1a & Pulmonary and Activation-Regulated Chemokine

Longitudinal feature Chemokine CC-4, Complement Factor H, Cystatin C, Interleukin-16, Kidney Injury Molecule 1, Macrophage 
Inflammatory Protein- 1a, Resistin, Sortilin
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Table 2

Accuracy of selective feature set by linear SVM

Feature set Accuracy Sens. Spec. AUC

11 single- feature 0.82 0.86 0.71 0.85

8 meta-feature 0.81 0.90 0.63 0.83

8 longitudinal feature 0.64 1 0.05 0.67
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Mo et al. Page 14

Table 3

Accuracy of concatenated selective feature set (11 single-features + 8 meta-features + 8 longitudinal-features) 

by linear SVM and ensemble method

Classifier Accuracy Sens. Spec. AUC

Linear SVM 0.83 0.86 0.72 0.85

Naïve Bayes 0.28 0.08 0.62 0.35

Logistics regression 0.63 1 0.04 0.52

Perceptron 0.38 0.02 1 0.51

Decision Tree 0.75 0.78 0.69 0.73

Ensemble 0.86 0.87 0.78 0.89
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Table 5

Accuracy of PCA feature by single SVM and ensemble method

Classifier Accuracy Sens. Spec. AUC

Linear SVM 0.89 0.95 0.85 0.92

Ensemble 0.86 0.92 0.74 0.87
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Table 6

Accuracy of combining PCA and selective feature-set with early fusion (with single SVM classifier on 

concatenated features) and late fusion (5 independent classifiers on each feature family)

Classifier Accuracy Sens. Spec. AUC

Early Fusion (SVM) 0.89 0.97 0.85 0.94

Early Fusion (Ensemble) 0.84 0.89 0.82 0.91

Late Fusion (SVM) 0.86 0.92 0.74 0.87

Late Fusion (Ensemble) 0.89 0.92 0.85 0.92
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